A Two-Dimensional Version of the Godunov Scheme for Scalar Balance Laws

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Two-Dimensional Version of the Godunov Scheme for Scalar Balance Laws

A Godunov scheme is derived for two-dimensional scalar conservation laws without or with source terms following ideas originally proposed by Boukadida and LeRoux [9] in the context of a staggered Lax-Friedrichs scheme. In both situations, the numerical fluxes are obtained at each interface of a uniform Cartesian computational grid just by means of the “external waves” involved in the entropy so...

متن کامل

A Three-Dimensional, Unsplit Godunov Method for Scalar Conservation Laws

Linear advection of a scalar quantity by a specified velocity field arises in a number of different applications. Of particular interest here is the transport of species and energy in low Mach number models for combustion, atmospheric flows, and astrophysics, as well as contaminant transport in Darcy models of saturated subsurface flow. An important characteristic of these problems is that the ...

متن کامل

The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions

We consider hyperbolic scalar conservation laws with discontinuous flux function of the type ∂tu+ ∂xf(x, u) = 0 with f(x, u) = fL(u)1 R−(x) + fR(u)1 R+(x). Here fL,R are compatible bell-shaped flux functions as appear in numerous applications. In [1] and [2], it was shown that several notions of solution make sense, according to a choice of the so-called (A,B)-connection. In this note, we remar...

متن کامل

On Large Time Step Godunov Scheme for Hyperbolic Conservation Laws

In this paper we study the large time step (LTS) Godunov scheme proposed by LeVeque for nonlinear hyperbolic conservation laws. As we known, when the Courant number is larger than 1, the linear interactions of the elementary waves in this scheme will be much more complicated than those for Courant number less than 1. In this paper, we will show that for scalar conservation laws, for any fixed C...

متن کامل

Lower compactness estimates for scalar balance laws

We study the compactness in Lloc of the semigroup (St)t≥0 of entropy weak solutions to strictly convex scalar conservation laws in one space dimension. The compactness of St for each t > 0 was established by P. D. Lax [1]. Upper estimates for the Kolmogorov’s ε-entropy of the image through St of bounded sets C in L ∩ L∞ which is denoted by Hε(St(C) | L(R)) := log2 Nε(St(C)). where Nε(St(C)) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2014

ISSN: 0036-1429,1095-7170

DOI: 10.1137/130925906